
The Counterpropagation
Network

The Counterpropagation network (CPN) is the most recently developed of the
models that we have discussed so far in this text. The CPN is not so much a
new discovery as it is a novel combination of previously existing network types.

 synthesized the architecture from a combination of a structure
known as a competitive network and Grossberg's structure [5, Al-
though the network architecture, as it appears in its originally published form
in Figure seems rather formidable, we shall see that the operation of the
network is quite straightforward.

Given a set of vector pairs, • • the CPN can learn
to associate an x vector on the input layer with a y vector at the output layer.
If the relationship between x and y can be described by a continuous function,

 such that y the CPN will learn to approximate this mapping for any
value of x in the range specified by the set of training vectors. Furthermore, if
the inverse of exists, such that x is a function of y, then the CPN will also learn
the inverse mapping, x = For a great many cases of practical interest,
the inverse function does not exist. In these situations, we can simplify the
discussion of the CPN by considering only the forward-mapping case, y =

In Figure 6.2, we have reorganized the CPN diagram and have restricted
our consideration to the forward-mapping case. The network now appears as

 are using the term function in its strict mathematical sense. If y is a function of x. then every
value of x corresponds to one and only one value of y. Conversely, if x is a function of y, then
every value of y corresponds to one and only one value of x. An example of a function whose
inverse is not a function is, y = — oo < x < oo. A somewhat more abstract, but perhaps
more interesting, situation is a function that maps images of animals to the name of the animal. For
example, "CAT" = of cat"). Each picture represents only one animal, but each animal
corresponds to many different pictures.

213

214 The Counterpropagation Network

"

Layers

Figure 6.1 This spiderlike diagram of the architecture has five layers:
two input layers (1 and 5), one hidden layer (3), and two
output layers (2 and 4). The gets its name from the fact
that the input vectors on layers 1 and 2 appear to propagate
through the network in opposite directions. Source: Reprinted
with permission from Robert '
networks." Proceedings of the IEEE First International
Conference on Neural Networks. San Diego, CA, June 1987.
©1987 IEEE.

a three-layer architecture, similar to, but not exactly like, the backpropagation
network discussed in Chapter 3. An input vector is applied to the units on
layer 1. Each unit on layer 2 calculates its net-input value, and a competition
is held to determine which unit has the largest net-input value. That unit is
the only unit that sends a value to the units in the output layer. We shall
postpone a detailed discussion of the processing until we have examined the
various components of the network.

CPNs are interesting for a number of reasons. By combining existing net-
work types into a new architecture, the CPN hints at the possibility of forming
other, useful networks from bits and pieces of existing structures. Moreover,
instead of employing a single learning algorithm throughout the network, the
CPN uses a different learning procedure on each layer. The learning algorithms
allow the CPN to train quite rapidly with respect to other networks that we have
studied so far. The tradeoff is that the CPN may not always yield sufficient

6.1 CPN Building Blocks 215

y' Output vector

Layer 3

Layer 2

Layer 1

x Input vector y Input vector

Figure 6.2 The forward-mapping CPN is shown. Vector pairs from
the training set are applied to layer 1. After training is
complete, applying the vectors (x, 0) to layer 1 will result in an
approximation, to the corresponding y vector, at the output
layer, layer 3. See Section 6.2 for more details of the training
procedure.

accuracy for some applications. Nevertheless, the CPN remains a good choice
for some classes of problems, and it provides an excellent vehicle for rapid pro-
totyping of other applications. In the next section, we shall examine the various
building blocks from which the CPN is constructed.

6.1 CPN BUILDING BLOCKS

The PEs and network structures that we shall study in this section play an
important role in many of the subsequent chapters in this text. For that reason,
we present this introductory material in some detail. There are four major
components: an input layer that performs some processing on the input data, a
processing element called an instar, a layer of instars known as a competitive
network, and a structure known as an outstar. In Section 6.2, we shall return
to the discussion of the CPN.

216 The Network

 The Input Layer
Discussions of neural networks often ignore the input-layer processing elements,
or consider them simply as pass-through units, responsible only for distribut-
ing input data to other processing elements. Computer simulations of networks
usually arrange for all input data to be scaled or normalized to accommodate
calculations by the computer's CPU. For example, input-value magnitudes may
have to be scaled to prevent overflow error during the calcula-
tions that dominate most network simulations. Biological systems do not have
the benefits of such preprocessing; they must rely on internal mechanisms to
prevent saturation of neural activities by large input signals. this section,
we shall examine a mechanism of interaction among processing elements that
overcomes this noise-saturation dilemma Although the mechanism has
some neurophysiological plausibility, we shall not examine any of the biologi-
cal implications of the model.

Examine the layer of processing elements shown in Figure 6.3. There is
one input value, for each of the n units on the layer. The total input pattern
intensity is given by 7 Corresponding to each we shall define a
quantity

(6.1)

Figure 6.3 This layer of input units has n processing elements,
 Each input value, is connected with

an excitatory connection (arrow with a plus sign) to its
corresponding processing element, Each Ii is connected
also to every other processing element, k i, with
an inhibitory connection (arrow with a minus sign). This
arrangement is known as on-center, The output
of the layer is proportional to the normalized reflectance
pattern.

6.1 Building Blocks 217

The vector, is called a reflectance pattern. Notice that this
pattern is normalized in the sense that =

The reflectance pattern is independent of the total intensity of the corre-
sponding input pattern. For example, the reflectance pattern corresponding to
the image of a person's face would be independent of whether the person were
being viewed in bright sunlight or in shade. We can usually recognize a familiar
person in a wide variety of lighting conditions, even if we have not seen her
previously in the identical situation. This experience suggests that our memory
stores and recalls reflectance patterns.

The outputs of the processing elements in Figure 6.3 are governed by the
set of differential equations,

(6.2)

where 0 < < B, and > 0. Each processing element receives a
net excitation (on-center) of (B - from its corresponding input value,
The addition of inhibitory connections from other units
is responsible for preventing the activity of the processing element from rising
in proportion to the absolute pattern intensity,

Once an input pattern is applied, the processing elements quickly reach an
equilibrium state = 0) with

(6.3)

where we have used the definition of in Eq. (6.1). The output pattern is
normalized, since

which is always less than B. Thus, the pattern of activity that develops across
the input units is proportional to the reflectance pattern, rather than to the original
input pattern.

After the input pattern is removed, the activities of the units do not remain
at their equilibrium values, nor do they return immediately to zero. The activ-
ity pattern persists for some time while the term reduces the activities
gradually back to a value of zero.

An input layer of the type discussed in this section is used for both the x-
vector and portions of the CPN input layer shown in Figure When
performing a digital simulation of the CPN, we can simplify the program by
normalizing the input vectors in software. Whether the input-pattern normal-
ization is accomplished using Eq. (6.2), or by some preprocessing in software,
depends on the particular implementation of the network.

218 The Counterpropagation Network

Exercise 6.1:

1. Solve Eq. (6.2) to find explicitly, assuming = 0 and a constant
input pattern, I.

2. Assume that the input pattern is removed at t = and find for t >

3. Draw the graph of from t = 0 to some What determines how
quickly (a) reaches its equilibrium value, and (b) decays back to zero
after the input pattern is removed?

Exercise 6.2: Investigate the equations

 = + (B -

as a possible alternative to Eq. (6.2) for the input-layer processing elements. For
a constant reflectance pattern, what happens to the activation of each processing
element as the total pattern intensity, increases?

Exercise 6.3: Consider the equations

±i = - +

which differ from Eq. (6.2) by an additional inhibition term,

1. Suppose = 0, but Ik > Show that can assume a negative
value. Does this result make sense? (Consider what it means for a real
neuron to have zero activation in terms of the neuron's resting potential.)

2. Show that the system suppresses noise by requiring that the reflectance
values, be greater than some minimum value before they will excite a
positive activity in the processing element.

6.1.2 The Instar

The hidden layer of the CPN comprises a set of processing elements known as
 In this section, we shall discuss the instar individually. In the following

section, we shall examine the set of instars that operate together to form the
CPN hidden layer.

The instar is a single processing element that shares its general structure
and processing functions with many other processing elements described in this
text. We distinguish it by the specific way in which it is trained to respond to
input data.

Let's begin with a general processing element, such as the one in Fig-
ure 6.4(a). If the arrow representing the output is ignored, the processing
element can be redrawn in the starlike configuration of Figure 6.4(b). The
inward-pointing arrows identify the instar structure, but we restrict the use of
the term instar to those units whose processing and learning are governed by the

6.1 CPN Building Blocks 219

(a) (b)

Figure 6.4 This figure shows (a) the general form of the processing element
with input vector I, weight vector and output value and
(b) the form of the processing element in (a). Notice that
the arrow representing the output is although it is still
presumed to exist.

equations in this section. The net-input value is calculated, as usual, by the dot
product of the input and weight vectors, net = I • w. We shall assume that the
input vector, I, and the weight vector, w, have been normalized to a length of

The output of the instar is governed by the equation

y + b net (6.4)

where a, b > 0. The dynamic behavior of y is illustrated in Figure 6.5.
We can solve Eq. (6.4) to get the output as a function of time. Assuming

the initial output is zero, and that a nonzero input vector is present from time
t 0 until time t,

 (6.5)
a

The equilibrium value of y(t) is

 -net (6.6)

If the input vector is removed at time after equilibrium has been reached,
then

y(t) = (6.7)

for t >

220 The Counterpropagation Network

a

Time

Input vector applied Input vector removed

Figure 6.5 This graph illustrates the output response of an instar. When
the input vector is nonzero, the output rises to an equilibrium
value of If the input vector is removed, the output
falls exponentially with a time constant of

Notice that, for a given a and b, the output at equilibrium will be larger
when the net-input value is larger. Figure 6.6 shows a diagram of the weight
vector, of an instar, and an input vector, I. The net-input value determines
how close to each other the two vectors are as measured by the angle between
them, 6. The largest equilibrium output will occur when the input and weight
vectors are perfectly aligned (8 = 0).

If we want the instar to respond maximally to a particular input vector,
we must arrange that the weight vector be made identical to the desired input
vector. The instar can learn to respond maximally to a particular input vector
if the initial weight vector is allowed to change according to the equation

 — — (6.8)

where y is the output of the instar, and c, > 0. Notice the relationship between
Eq. (6.8) and the Hebbian learning rule discussed in Chapter The second term
on the right side of Eq. (6.8) contains the product of the input and the output
of a processing element. Thus, when both are large, the weight on the input
connection is reinforced, as predicted by Hebb's theory.

Equation 6.8 is difficult to integrate because is a complex function of
time through Eq. (6.5). We can try to simplify the problem by assuming that y

6.1 CPN Building Blocks 221

Initial w

(a) (b)

Figure 6.6 This figure shows an example of an input vector and a weight
vector on an (a) This figure illustrates the relationship
between the input and weight vectors of an instar. Since the
vectors are normalized, net I • w — (b)
The instar learns an input vector by rotating its weight vector
toward the input vector until both vectors are aligned.

reaches its equilibrium value much faster than changes in w can occur. Then,
y = — Because net = w • I, Eq. (6.8) becomes

w (6.9)

where we have absorbed the factor a/6 into the constant d. Although Eq. (6.9)
is still not directly solvable, the assumption that changes to weights occur more
slowly than do changes to other parameters is important. We shall see more of
the utility of such an assumption in Chapter 8. Figure 6.7 illustrates the solution
to Eq. (6.9) for a simple two-dimensional case.

An alternative approach to Eq. (6.8) begins with the observation that, in the
absence of an input vector, I, the weight vector will continuously decay away
toward zero (w This effect can be considered as a forgetfulness on
the part of the processing element. To avoid this forgetfulness, we can modify
Eq. (6.8) such that any change to the weight vector depends on whether there is
an input vector there to be learned. If an input vector is present, then net = w • I
will be nonzero. Instead of Eq. (6.8), we can use as the learning law,

w + (6.10)

where

 =
1 net > 0
0 net = 0

222 The Counterpropagation Network

0.866

 Initial w =
/

/ 0.5

Time step, t

Figure 6.7 Given an input vector I and an in i t ia l weight vector,
 the components, and of the weight

vector evolve in time according to Eq. (6.9), as shown in the
graph. The weight vector eventually aligns itself to the input
vector such that w I. For this example, = d — 1.

Equation can be integrated directly for = Notice that
 (d/c)l, making c = d a condition that must be satisfied for w to evolve

toward an exact match with I. Using this fact, we can rewrite Eq. in a
form more suitable for later digital simulations:

Aw — w)

In Eq. we have used the approximation and have let
a = An approximate solution to Eq. (6.10) would be

 l) (6.12)

for < 1; see Figure 6.8.
A single instar learning a single input vector does not provide an interesting

case. Let's consider the situation where we have a number of input vectors,
all relatively close together in what we shall call a cluster. A cluster might
represent items of a single class. We would like the instar to learn some form
of representative vector of the class: the average, for example. Figure 6.9
illustrates the idea.

Learning takes place in an iterative fashion:

1. Select an input vector, at random, according to the probability distribu-
tion of the cluster. (If the cluster is not uniformly distributed, you should
select input vectors more frequently from regions where there is a higher
density of vectors.)

2. Calculate — w), and update the weight vector according to Eq.

6.1 CPN Building Blocks 223

Aw = - w)

Figure 6.8 The quantity (I - w) is a vector that points from w toward I.
In Eq. (6.12), w moves in discrete timesteps toward I. Notice
that w does not remain normalized.

3. Repeat steps 1 and 2 for a number of times equal to the number of input
vectors in the cluster.

4. Repeat step 3 several times.

The last item in this list is admittedly vague. There is a way to calculate an
average error as learning proceeds, which can be used as a criterion for halting
the learning process (see Exercise 6.4). In practice, error values are rarely
used, since the instar is never used as a stand-alone unit, and other criteria will
determine when to stop the training.

It is also a good idea to reduce the value of a as training proceeds. Once
the weight vector has reached the middle of the cluster, outlying input vectors
might pull w out of the area if a is very large.

When the weight vector has reached an average position within the cluster,
it should stay generally within a small region around that average position. In
other words, the average change in the weight vector, should become
very small. Movements of w in one direction should generally be offset by
movements in the opposite direction. If we assume = 0, then Eq.
shows that

(w) =

which is what we wanted.

224 The Counterpropagation Network

(a) (b)

Figure 6.9 This figure illustrates how an instar learns to respond to a
cluster of input (a) To learn a cluster of input vectors,
we select the initial weight vector to be equal to some member
of the cluster. This ensures that the weight vector
is in the right region of (b) As learning proceeds, the
weight vector wil l eventually settle down to some small region
that represents an average, of all the input vectors.

Now that we have seen how an instar can learn the average of a cluster of
input vectors, we can talk about layers of instars. Instars can be grouped together
into what is known as a competitive network. The competitive network forms
the middle layer of the CPN and is the subject of the next section.

Exercise 6.4: For a given input vector, we can define the instar error as the
magnitude of the difference between the input vector and the weight vector:

 — Show that the mean squared error can be written as

(e2}

where is the angle between and w.

6.1.3 Competitive Networks
In the previous section, we saw how an individual instar could learn to respond
to a certain group of input vectors clustered together in a region of space.
Suppose we have several instars grouped in a layer, as shown in Figure 6.10,
each of which responds maximally to a group of input vectors in a different
region of space. We can say that this layer of instars classifies any input vector,
because the instar with the strongest response for any given input identifies the
region of space in which the input vector lies.

6.1 CPN Building Blocks 225

 '

Input vector, I

Figure 6.10 A layer of instars arranged in a competitive network. Each
unit receives the input vector I and the

 unit has associated with it the weight vector, =
 Net-input values are calculated in the

usual way: = The winner of the competition is the
unit with the largest net input.

Rather than our examining the response of each instar to determine which
is the largest, our task would be simpler if the instar with the largest response
were the only unit to have a nonzero output. This effect can be accomplished
if the instars compete with one another for the privilege of turning on. Since
there is no external judge to decide which instar has the largest net input, the
units must decide among themselves who is the winner. This decision process
requires communication among all the units on the layer; it also complicates
the analysis, since there are more inputs to each unit than just the input from
the previous layer. In the following discussion, we shall be focusing on unit
activities, rather than on unit output values.

Figure illustrates the interconnections that implement competition
among the instars. The unit activations are determined by differential equa-
tions. There is a variety of forms that these differential equations can take; one
of the simplest is

 + (B - + - (6.13)

where A, B > 0 and is an output function that we shall specify shortly
This equation should be compared to Eq. (6.2). We can convert Eq. (6.2) to

226 The Counterpropagation Network

Figure An on-center off-surround system for implementing
competition among a group of instars. Each unit receives a
positive feedback signal to itself and sends an inhibitory signal
to all other units on the layer. The unit whose weight vector
most closely matches the input vector sends the strongest
inhibitory signals to the other units and receives the largest
positive feedback from itself.

Eq. by replacing every occurrence of Ij in Eq. (6.2) with +
for all The relationship between the constants A and B, and the form of the
function, f (x j) , determine how the solutions to Eq. (6.13) evolve in time. We
shall now look at specific cases.

Equation is somewhat easier to analyze if we convert it to a pair
of equations: one that describes the reflectance variables, —
and one that describes the total pattern intensity, x = First, rearrange
Eq. (6.13) as follows:

 -

Next, sum over i to get

x = -Ax + - x) (6.14)

Now substitute xXi into Eq. (6.13) and use Eq. (6.14) to simplify the result. If
we make the definition = then we get

 = (6.15)

We can now evaluate the asymptotic behavior of Eqs. (6.14) and (6.15).
Let's begin with the simple, linear case of = w. Since g(w) =

 = and the first term on the right of Eq. is zero. The reflectance
variables stabilize at

so the activities become
net;

6.1 Building Blocks 227

where comes from setting Eq. equal to zero. This equation shows
that the units will accurately register any pattern presented as an input. Now
let's look at what happens after the input pattern is removed.

Let net, = 0 for all i. Then, is identically zero for all time and the
reflectance variables remain constant. The unit activations now depend only on
x, since x, — Equation (6.14) reduces to

 (B - A -

If B A, then x < 0 and x 0. However, if B > A, then x B - A and
the activity pattern becomes stored permanently on the units. This behavior is
unlike the behavior of the input units described by Eq. (6.2), where removal
of the input pattern always resulted in a decay of the activities. We shall call
this storage effect short-term memory (STM). Even though the effect appears
to be permanent, we can assume the existence of a reset mechanism that will
remove the current pattern so that another can be stored. Figure 6.12 illustrates
a simple example for the linear output function.

For our second example, we assume a output function,
 In this case = w. Notice that the first term on the right

of Eq. contains the factor — For the quadratic output
function, this expression reduces to — If > for all values of

 ?', then the first term in Eq. (6.14) is an excitatory term. If Xi < for
A- ?', then the first term in Eq. (6.14) becomes an inhibitory term. Thus, this
network tends to enhance the activity of the unit with the largest value of Xi.
This effect is illustrated in Figure After the input pattern is removed,
will be greater than zero for only the unit with the largest value of Xi.

Exercise 6.5: Use Eq. to show that, after the input pattern has been
removed, the total activity of the network, x, is bounded by the value of B.

We now have an output function that can be used to implement a winner-
take-all competitive network. The quadratic output function (or, for that matter,
any function = where n > 1) can be used in inhibitory
connections to suppress all inputs except the largest. This effect is the ultimate
in noise suppression: The network assumes that everything except the largest
signal is noise.

It is possible to combine the qualities of noise suppression with the ability
to store an accurate representation of an input vector: Simply arrange for the
output function to be faster than linear for small activities, and linear for larger
activities. If we add the additional constraint that the unit output must be
bounded at all times, we must have the output function increase at a
linear rate for large values of activity. This combination results in a sigmoid
output function, as illustrated in Figure 6.14.

The mathematical analysis of Eqs. (6.14) and (6.15) with a sigmoid output
function is considerably more complicated than it was for the other twocases.
All the cases considered here, as well as many others, are treated in depth by

228 The Counterpropagation Network

Equilibrium
 pattern

w

(a) Equilibrium
activity pattern

oooo
Input vector = 0

(c)

Input vector

(b)

Figure 6.12 This series of figures shows the result of applying a certain
input vector to units having a linear output (a) The
graph of the output function, = w. (b) This figure shows
the result of the sustained application of the input vector. The
units reach equilibrium activities as (c) After removal
of the input vector, the units reach an equilibrium such that
the pattern is stored in STM.

Grossberg Use of the sigmoid results in the existence of a quenching
threshold (QT). Units whose net inputs are above the QT will have their ac-
tivities enhanced. The effect is one of contrast enhancement. An extreme
example is illustrated in Figure 6.14.

Reference back to Figure 6.1 or 6.2 will reveal that there are no obvious
interconnections among the units on the competitive middle layer. In a digital
simulation of a competitive network, the actual interconnections are unnecessary.
The CPU can act as an external judge to determine which unit has the largest net-

6.1 CPN Building Blocks 229

(a)

Equilibrium
activity pattern

Equilibrium
activity pattern

oooo
Input vector = 0

(c)

Input vector

(b)

Figure 6.13 This series of figures is analogous to those in Figure 6.12,
with units having a quadratic output (a) The graph
of the quadratic output (b) While the input vector is
present, the network tends to enhance the activity of the unit
with the largest activity. For the given input pattern, the unit
activities reach the equilibrium values (c) After the
input pattern is removed, all activities but the largest decay
to zero.

input value. The winning unit would then be assigned an output value of The
situation is similar for the input layer. In a software simulation, we do not need
on-center off-surround interactions to normalize the input vector; that can also be
done easily by the CPU. These considerations aside, attention to the underlying
theory is essential to understanding. When digital simulations give way to
neural-network integrated circuitry, such an understanding will be required.

230 The Counterpropagation Network

f(w)

(a)
Equilibrium
activity pattern

Equilibrium
activity pattern

I I
oooo

Input vector = 0

(c)

Input vector

(b)

Figure 6.14 This figure is analogous to Figures and but with
units having a sigmoid output (a) The sigmoid
output function combines noise suppression at low activities,
linear pattern storage at intermediate values, and a bounded
output at large activity (b) When the input vector
is present, the unit activities reach an equilibrium value, as

 (c) After removal of the input vector, the activities
above a certain threshold are enhanced, whereas those below
the threshold are suppressed.

6.1.4 The Outstar

The final leg of our journey through CPN components brings us to Grossberg's
outstar structure. As Figure shows, an outstar is composed of all of the
units in the CPN outer layer and a single hidden-layer unit. Thus, the outer-layer
units participate in several different outstars: one for each unit in the middle
layer.

6.1 CPN Building Blocks 231

y' Output vector

Layer

Layer

Layer 1

x input vector y Input vector

(a)

 Output vector

(b)

(c)

Figure 6.15 This figure illustrates the outstar and its relationship to the
CPN (a) The dotted line encompasses one of
the outstar structures in the CPN. The line is intentionally
drawn through the middle-layer unit to indicate the dual
functionality of that unit. Each middle-layer unit combines
with the outer layer to form an individual outstar. (b) A single
outstar unit is shown. The output units of the outstar have two
inputs: z, from the connecting unit of the previous layer, and

 which is the training input. The training input is present
during only the learning period. The output of the outstar is
the vector (c) The outstar is redrawn in a
suggestive configuration. Note that the arrows point outward
in a configuration that is complementary to the instar.

232 The Counterpropagation Network

In Chapter we gave a brief description of Pavlovian conditioning in terms
of Hebbian learning. Grossberg argues that the outstar is the minimal neural
architecture capable of classical conditioning Consider the outstar shown
in Figure 6.16. Initially, the conditioned stimulus (CS) (e.g., a ringing bell)
is assumed to be unable to elicit a response from any of the units to which it
is connected. An unconditioned stimulus (UCS) (the sight of food) can cause
an unconditioned response (UCR) (salivation). If the CS is present while the
UCS is causing the UCR, then the strength of the connection from the CS unit
to the UCR unit will also be increased, in keeping with Hebb's theory (see
Chapter 1). Later, the CS will be able to cause a conditioned response (CR)
(the same as the UCR), even if the UCS is absent.

The behavior of the outstars in the CPN resembles this classical condition-
ing. During the training period, the winner of the competition on the hidden
layer turns on, providing a single CS to the output units. The UCS is supplied
by the y-vector portion of the input layer. Because we want the network to
learn the actual y vector, the UCR will be the same as the y vector, within a
constant multiplicative factor. After training is complete, the appearance of the
CS will cause the CR value (the vector) to appear at the output units, even
though the UCS values will be all zero.

In the CPN, the hidden layer participates in both the instar and outstar
structures of the network. The function of the competitive instars is to recognize
an input pattern through a winner-take-all competition. Once a winner has been
declared, that unit becomes the CS for an outstar. The outstar associates some
value or identity with the input pattern. The instar and outstar complement each
other in this fashion: The instar recognizes an input pattern and classifies it; the
outstar identifies or names the selected class. This behavior led one researcher
to note that the instar is dumb, whereas the outstar is blind

The equations that govern the processing and learning of the outstar are
similar in form to those for the instar. During the training process, the output
values of the outstar can be calculated from

 = +

which is similar to Eq. (6.4) for the instar except for the additional term due to
the training input, The parameters a, b, and c, are all assumed to be positive.
The value of is calculated in the usual way as the sum of products of weights
and input values from the connecting units. For the outstar and the CPN, only
a single connecting unit has a nonzero output at any given time. Even though
each output unit of the outstar has an entire weight vector associated with it, the
net input reduces to a single term, where z is the output of the connecting
unit. In the case of the CPN, Therefore, we can write

 = + byi + (6.16)

where the unit on the hidden layer is the connecting unit. In its most general
form, the parameters 6, and c in Eq. (6.16) are functions of time. Here, we

6.1 Building Blocks 233

UCR
UCS

(a)

ucs = o

\

(b)

Figure 6.16 This figure shows an implied classical-conditioning scenario.
(a) During the conditioning period, the CS and the UCS excite
one of the output units (b) After conditioning,
the presence of the CS alone can excite the CR without
exciting any of the other output units.

234 The Counterpropagation Network

shall consider them to be constants for simplicity. For the remainder of this
discussion, we shall drop the j subscript from the weight.

After training is complete, no further changes in take place and the
training inputs, are absent. Then, the output of the outstar is

 = + (6.17)

where is the fixed weight value found during training.
The weights evolve according to an equation almost identical to Eq. (6.10)

for the instar:
 = + (6.18)

Notice that the second term in Eq. contains the training input, not the
unit output, The function ensures that no unlearning takes place when
there is no training input present, or when the connecting unit is off (z — 0).
Since both z and U(z) are 1 for the middle-layer unit that wins the competition,
Eq. (6.18) becomes

Wi = -dwi +

for the connections from the winning, middle-layer unit. Connections from other
middle-layer units do not participate in the learning.

Recall that a given instar can learn to recognize a cluster of input vectors.
If the desired CPN outputs (the corresponding to each vector in the cluster
are all identical, then the weights eventually reach the equilibrium values:

If, on the other hand, each input vector in the cluster has a slightly different
output value associated with it, then the outstar will learn the average of all of
the associated output values:

Using the latter value for the equilibrium weight, Eq. shows that the
output after training reaches a steady state value of

Since we presumably want = we can require that a c in Eq. (6.17)
and that d e in Eq. (6.18). Then,

(6.20)

For the purpose of digital simulation, we can approximate the solution to
Eq. by

 + = + - (6.21)

following the same procedure that led to Eq. for the instar.

6.2 CPN Data Processing 235

6.2 CPN DATA PROCESSING

We are now in a position to combine the component structures from the previous
section into the complete CPN. We shall still consider only the forward-mapping
CPN for the moment. Moreover, we shall assume that we are performing a dig-
ital simulation, so it will not be necessary to model explicitly the interconnects
for the input layer or the competitive layer.

6.2.1 Forward Mapping

Assume that all training has occurred and that the network is now in a production
mode. We have an input vector, I, and we would like to find the corresponding
y vector. The processing is depicted in Figure and proceeds according to
the following algorithm:

1. Normalize the input vector, =

2. Apply the input vector to the x-vector portion of layer 1. Apply a zero
vector to the portion of layer

3. Since the input vector is already normalized, the input layer only distributes
it to the units on layer 2.

4. Layer 2 is a winner-take-all competitive layer. The unit whose weight
vector most closely matches the input vector wins and has an output value
of All other units have outputs of 0. The output of each unit can be
calculated according to

1 > for all j i
0 otherwise

5. The single winner on layer 2 excites an outstar.

Each unit in the outstar quickly reaches an equilibrium value equal to the
value of the weight on the connection from the winning layer 2 unit [see
Eq. If the unit wins on the middle layer, then the output layer
produces an output vector where represents the
number of units on the output layer. A simple way to view this processing is
to realize that the equilibrium output of the outstar is equal to the outstar's net
input,

 (6.23)

Since Zj = 0 unless j = i, then which is consistent with
the results obtained in Section

This simple algorithm uses equilibrium, or asymptotic, values of node ac-
tivities and outputs. We thus avoid the need to solve numerically all the corre-
sponding differential equations.

236 The Counterpropagation Network

y' Output vector

Layer 3

Layer 2

Layer 1

x Input vector

0

y Input vector

Figure This figure shows a summary of the processing done on an
input vector by the The input vector,
is distributed to all units on the competitive layer. The
unit wins the competition and has an output of all other
competitive units have an output of 0. This competition
effectively selects the proper output vector by exciting a single
connection to each of the outstar units on the output layer.

6.2.2 Training the

Here again, we assume that we are performing a digital simulation of the
CPN. Although this assumption does not eliminate the need to find numerical
solutions to the differential equations, we can still take advantage of prenor-
malized input vectors and an external judge to determine winners on the com-
petitive layer. We shall also assume that a set of training vectors has been
defined adequately. We shall have more to say on that subject in a later sec-
tion.

Because there are two different learning algorithms in use in the CPN, we
shall look at each one independently. In fact, it is a good idea to train the
competitive layer completely before beginning to train the output layer.

6.2 CPN Data Processing 237

The competitive-layer units train according to the instar learning algorithm
described in Section Since there will typically be many instars on the com-
petitive layer, the iterative training process described earlier must be amended
slightly. Here, as in Section we assume that a cluster of input vectors forms
a single class. Now, however, we have the situation where we may have sev-
eral clusters of vectors, each cluster representing a different class. Our learning
procedure must be such that each instar learns (wins the competition) for all
the vectors in a single cluster. To accomplish the correct classification for each
class of input vectors, we must proceed as follows:

1. Select an input vector from among all the input vectors to be used for
training. The selection should be random according to the probability dis-
tribution of the vectors.

2. Normalize the input vector and apply it to the CPN competitive layer.

3. Determine which unit wins the competition by calculating the net-input
value for each unit and selecting the unit with the largest (the unit whose
weight vector is closest to the input vector in an inner-product sense).

4. Calculate — for the winning unit only, and update that unit's weight
vector according to Eq. (6.12):

 + + - w)

5. Repeat steps 1 through 4 until all input vectors have been processed once.

6. Repeat step 5 until all input vectors have been classified properly. When
this situation exists, one instar unit will win the competition for all input
vectors in a certain cluster. Note that there might be more that one cluster
corresponding to a single class of input vectors.

7. Test the effectiveness of the training by applying input vectors from the
various classes that were not used during the training process itself. If any

 occur, additional training passes through step 6 may be
required, even though all the training vectors are being classified correctly.
If training ends too abruptly, the win region of a particular unit may be
offset too much from the center of the cluster, and outlying vectors may be

 We define an instar's win region as the region of vector space
containing vectors for which that particular instar will win the competition.
(See Figure

An issue that we have overlooked in our discussion is the question of
initialization of the weight vectors. For all but the simplest problems, random
initial weight vectors will not be adequate. We already hinted at an initialization
method earlier: Set each weight vector equal to a representative of one of the
clusters. We shall have more to say on this issue in the next section.

Once satisfactory results have been obtained on the competitive layer, train-
ing of the outstar layer can occur. There are several ways to proceed based on
the nature of the problem.

238 The Counterpropagation Network

Figure 6.18 In this drawing, three clusters of vectors represent three
distinct classes: A, B, and C. Normalized, these vectors end
on the unit hypersphere. After training, the weight vectors on
the competitive layer have settled near the centroid of each
cluster. Each weight vector has a win region represented,
although not accurately, by the circles drawn on the surface of
the sphere around each cluster. Note that one of the B vectors
encroaches into C's win region indicating that erroneous
classification is possible in some cases.

Suppose that each cluster of input vectors represents a class, and all of the
vectors in a cluster map to the identical output vector. In this case, no iterative
training algorithm is necessary. We need only to determine which hidden unit
wins for a particular class. Then, we simply assign the weight vector on the
appropriate connections to the output layer to be equal to the desired output
vector. That is, if the hidden unit wins for all input vectors of the class
for which A is the desired output vector, then we set = where
is the weight on the connection from the ith hidden unit to the output
unit.

If each input vector in a cluster maps to a different output vector, then the
outstar learning procedure will enable the outstar to reproduce the average of

6.2 CPN Data Processing 239

those output vectors when any member of the class is presented to the inputs
of the CPN. If the average output vector for each class is known or can be
calculated in advance, then a simple assignment can be made as in the previous
paragraph: Let =

If the average of the output vectors is not known, then an iterative procedure
can be used based on Eq. (6.21).

1. Apply a normalized input vector, and its corresponding output vector,
 to the x and y inputs of the CPN, respectively.

2. Determine the winning competitive-layer unit.

3. Update the weights on the connections from the winning competitive unit
to the output units according to Eq. (6.21):

 = + -

4. Repeat steps 1 through 3 until all vectors of all classes map to satisfactory
outputs.

6.2.3 Practical Considerations
In this section, we shall examine several aspects of CPN design and operation
that will influence the results obtained using this network. The CPN is decep-
tively simple in its operation and there are several pitfalls. Most of these pitfalls
can be avoided through a careful analysis of the problem being solved before an
attempt is made to model the problem with the CPN. We cannot cover all even-
tualities in this section. Instead, we shall attempt to illustrate the possibilities
in order to raise your awareness of the need for careful analysis.

The first consideration is actually a combination of two: the number of hid-
den units required, and the number of exemplars, or training vectors, needed for
each class. It stands to reason that there must be at least as many hidden nodes
as there are classes to be learned. We have been assuming that each class of
input vectors can be identified with a cluster of vectors. It is possible, however,
that two completely disjoint regions of space contain vectors of the same class.
In such a situation, more than one competitive node would be required to iden-
tify the input vectors of a single class. Unfortunately, for problems with large
dimensions, it may not always be possible to determine that such is the case in
advance. This possibility is one reason why more than one representative for
each class should be used during training, and also why the training should be
verified with other representative input vectors.

Suppose that a of a test vector does occur after all
of the training vectors are classified correctly. There are several possible
reasons for this error. One possibility is that the set of exemplars did not
adequately represent the class, so the hidden-layer weight vector did not find
the true centroid. Equivalently, training may not have continued for a suffi-
cient time to center the weight vector properly; this situation is illustrated in
Figure

240 The Counterpropagation Network

Region of
class 1
input

Region of
class 2
input vectors

Figure 6.19 In this example, weight vector learns class 1 and learns
class 2. The input vectors of each class extend over the
regions shown. Since has not learned the true centroid
of class 2, an outlying vector, is actually closer to and
is classified erroneously as a member of class

One solution to these situations is to add more units on the competitive layer.
Caution must be used, however, since the problem may be exacerbated. A unit
added whose weight vector appears at the intersection between two classes may
cause of many input vectors of the original two classes. If a
threshold condition is added to the competitive units, a greater amount of control
exists over the partitioning of the space into classes. A threshold prevents a unit
from winning if the input vector is not within a certain minimum angle, which
may be different for each unit. Such a condition has the effect of limiting the
size of the win region of each unit.

There are also problems that can occur during the training period itself. For
example, if the distribution of the vectors of each class changes with time, then
competitive units that were coded originally for one class may get to
represent another. Moreover, after training, moving distributions will result in
serious classification errors. Another situation is illustrated in Figure 6.20. The
problem there manifests itself in the form of a stuck vector; that is, one unit
that never seems to win the competition for any input vector.

The stuck-vector problem leads us to an issue that we touched on earlier: the
initialization of the competitive-unit weight vectors. We stated in the previous
section that a good strategy for initialization is to assign each weight vector to be
identical to one of the prototype vectors for each class. The primary motivation
for using this strategy is to avoid the stuck-vector problem.

The extreme case of the stuck-vector problem can occur if the weight vectors
are initialized to random values. Training with weight vectors initialized in this
manner could result in all but one of the weight vectors becoming stuck. A

6.2 Data Processing 241

Region of
class 1
input vectors

 =0)

Region of
class 2
input vectors

(a)

Region of
class 1
input vectors

Region of
class 2
input vectors

(b)

Figure 6.20 This figure illustrates the (a) In this
example, we would like to learn the class represented by

 and to learn (b) Initial training with has brought
 closer to than is. Thus, will win for either or
 and will never win.

single weight vector would win for every input vector, and the network would
not learn to distinguish between any of the classes on input vectors.

This rather peculiar occurrence arises due to a combination of two factors:
 in a high-dimensional space, random vectors are all nearly orthogonal to one

another (their dot products are near 0), and (2) it is not unlikely that all input
vectors for a particular problem are clustered within a single region of space. If
these conditions prevail, then it is possible that only one of the random weight
vectors lies within the same region as the input vectors. Any input vector would
have a large dot product with that one weight vector only, since all other weight
vectors would be in orthogonal regions.

242 The Counterpropagation Network

Another approach to dealing with a stuck vector is to endow the competitive
units with a conscience. Suppose that the probability that a particular unit wins
the competition was inversely proportional to the number of times that unit won
in the past. If a unit wins too often, it simply shuts down, allowing others to
win for a change. Incorporating this feature can unstick a stuck vector resulting
from a situation such as the one shown in Figure 6.20.

In contrast to the competitive layer, the layer of outstars on the output layer
has few potential problems. Weight vectors can be randomized initially, or set
equal to 0 or to some other convenient value. In fact, the only real concern is
the value of the parameter, (3, in the learning law, Eq. (6.21). Since Eq. (6.21) is
a numerical approximation to the solution of a differential equation, 0 should be
kept suitably small, (0 (3 1), to keep the solution well-behaved. As learning
proceeds, can be increased somewhat as the difference term, (yi —
becomes smaller.

The parameter a in the competitive-layer learning law can start out some-
what larger than (3. A larger initial a will bring weight vectors into alignment
with exemplars more quickly. After a few passes, a should be reduced rather
than increased. A smaller a will prevent outlying input vectors from pulling
the weight vector very far from the centroid region.

A final caveat concerns the types of problems suitable for the CPN. We
stated at the beginning of the chapter that the CPN is useful in many situations
where other networks, especially backpropagation, are also useful. There is,
however, one class of problems that can be solved readily by the BPN that
cannot be solved at all by the CPN. This class is characterized by the need
to perform a generalization on the input vectors in order to discover certain
features of the input vectors that correlate to certain output values. The parity
problem discussed in the next paragraph illustrates the point.

A backpropagation network with an input vector having, say, eight bits can
learn easily to distinguish between vectors that have an even or odd number
of A BPN with eight input units, eight hidden units, and one output unit
suffices to solve the problem Using a representative sample of the 256
possible input vectors as a training set, the network learns essentially to count
the number of in the input vector. This problem is particularly difficult for
the CPN because the network must separate vectors that differ by only a single
bit. If your problem requires this kind of generalization, use a BPN.

6.2.4 The Complete CPN

Our discussion to this point has focused on the forward-mapping CPN. We wish
to revisit the complete, forward- and reverse-mapping CPN described in the
introduction to this chapter. In Figure the full CPN (see Figure is
redrawn in a manner similar to Figure 6.2. Describing in detail the processing
done by the full CPN would be largely repetitive. Therefore, we present a
summary of the equations that govern the processing and learning.

6.2 Data Processing 243

x' Output vector y' Output vector

Layer 3

Layer 2

Layer 1
x Input vector y Input vector

Figure 6.21 The full architecture is redrawn from Figure Both
x and y input vectors are fully connected to the competitive
layer. The x inputs are connected to the output units, and
the y inputs are connected to the outputs.

Both x and y input vectors must be normalized for the full CPN. As in
the forward-mapping CPN, both x and y are applied to the input units during
the training process. After training, inputs of (x, 0) will result in an output of

 and an input of will result in an output of
Because both x and y vectors are connected to the hidden layer, there are

two weight vectors associated with each unit. One weight vector, r, is on the
connections from the x inputs; another weight vector, s, is on the connections
from the y inputs.

Each unit on the competitive layer calculates its net input according to

 r • x + s • y

The output of the competitive layer units is

_ 1 net,
0 otherwise

During the training process

r, = - T

s, =

244 The Counterpropagation Network

As with the forward-mapping network, only the winning unit is allowed to learn
for a given input vector.

Like the input layer, the output layer is split into two distinct parts. The
y' units have weight vectors and the x' units have weight vectors The
learning laws are

and

Once again, only weights for which Zj 0 are allowed to learn.

Exercise 6.6: What will be the result, after training, of an input of
where = and =

6.3 AN IMAGE-CLASSIFICATION EXAMPLE

In this section, we shall look at an example of how the CPN can be used
to classify images into categories. In addition, we shall see how a simple
modification of the CPN will allow the network to perform some interpolation
at the output layer.

The problem is to determine the angle of rotation of the principal axis of an
object in two dimensions, directly from the raw video image of the object
In this case, the object is a model of the Space Shuttle that can be rotated 360
degrees about a single axis of rotation. Numerical algorithms as well as pattern-
matching techniques exist that will solve this problem. The neural-network
solution possesses some interesting advantages, however, that may recommend
it over these traditional approaches.

Figure 6.22 shows a diagram of the system architecture for the spacecraft
orientation system. The video camera, television monitor, and robot all interface
to a desktop computer that simulates the neural network and houses a video
frame-grabber board. The architecture is an example of how a neural network
can be embedded as a part of an overall system.

The system uses a CPN having 1026 input units for the image and
2 for the training inputs), hidden units, and 2 output units. The units on
the middle layer learn to divide the input vectors into different classes. There
are 12 units in this layer, and 12 different input vectors are used to train the
network. These 12 vectors represent images of the shuttle at 30-degree incre-
ments (0°, 330°). Since there are categories and 12 training vectors,
training of the competitive layer consists of setting each unit's weight equal to
one of the (normalized) input vectors. The output layer units learn to associate
the correct sine and cosine values with each of the classes represented on the
middle layer.

6.3 An Image-Classification Example 245

Figure 6.22 The system architecture for the spacecraft orientation system
is shown. The video camera and frame-grabber capture a
256-by-256-pixel image of the model. That image is reduced
to 32-by-32 pixels by a pixel-averaging technique, and is
then to produce a binary image. The resulting

 vector is used as the input to the neural
network, which responds by giving the sine and cosine of
the rotation angle of the principal axis of the model. These
output values are converted to an angle that is sent as part
of a command string to a mechanical robot assembly. The
command sequence causes the robot to reach out and pick
up the model. The angle is used to roll the robot's wrist
to the proper orientation, so that the robot can grasp the
model perpendicular to the long axis. Source: Reprinted
with permission from James A. Freeman, "Neural networks
for machine vision: the spacecraft orientation demonstration."

 Ford Aerospace Technical Journal, 1988.

246 The Counterpropagation Network

It would seem that this network is limited to classifying all input patterns
into only one of 12 categories. An input pattern representing a rotation of 32
degrees, for example, probably would be classified as a 30-degree pattern by
this network. One way to remedy this deficiency would be to add more units
on the middle layer, allowing for a finer categorization of the input images.
An alternative approach is to allow the output units to perform an interpola-
tion for patterns that do not match one of the training patterns to within a
certain tolerance. For this scheme to be accomplished, more than
one unit on the competitive layer must share in winning for each input vec-
tor.

Recall that the output-layer units calculate their output values according to
Eq. (6.23): In the normal case, where the hidden unit
wins, = since Zj = 1 for — i and Zj = 0 otherwise. Suppose two
competitive units shared in ones with the two closest matching
patterns. Further, let the output of those units be proportional to how close the
input pattern is; that is, Zj cos for the two winning units. If we restrict
the total outputfrom the middle layer to unity, then the output values from the
output layer would be

 = +

where the and units on the middle layer were the winners, and

The network output is a linear interpolation of the outputs that would be obtained
from the two patterns that exactly matched the two hidden units that shared the
victory.

Using this technique, the network will classify successfully input patterns
representing rotation angles it had never seen during the training period. In
our experiments, the average error was approximately ±3°. However, since a
simple linear interpolation scheme is used, the error varied from almost 0 to as
much as 10 degrees. Other interpolation schemes could result in considerably
higher accuracy over the entire range of input patterns.

One of the benefits of using the neural-network approach to pattern matching
is robustness in the presence of noise or of contradictory data. An example is
shown in Figure 6.23, where the network was able to respond correctly, even
though a substantial portion of the image was obscured.

It is unlikely that someone would use a neural network for a simple orien-
tation determination. The methodology can be extended to more realistic cases,
however, where the object can be rotated in three dimensions. In such cases, the
time required to construct and train a neural network may be significantly less
than the time required for development of algorithms that perform the identical
tasks.

6.4 The CPN Simulator 247

(a) (b)

Figure 6.23 These figures show 32-by-32-pixel arrays of two different
input vectors for the spacecraft-orientation (a) This
is a bit-mapped image of the space-shuttle model at an
angle of as measured clockwise from the vertical.
(b) The obscured image was used as an input vector to
the spacecraft-orientation system. The CPN responded with
an angle of 149°. Source: Reprinted with permission from
James A. Freeman, "Neural networks for machine vision:
the spacecraft orientation demonstration." Ford
Aerospace Technical Journal, Fall 1988.

6.4 THE CPN SIMULATOR

Even though it utilizes two different learning rules, the CPN is perhaps the least
complex of the layered networks we will simulate, primarily because of the
aspect of competition implemented on the single hidden layer. Furthermore, if
we assume that the host computer system ensures that all input pattern vectors are
normalized prior to presentation to the network, it is only the hidden layer that
contains any special processing considerations: the input layer is simply a fan-
out layer, and each unit on the output layer merely performs a linear summation
of its active inputs. The only complication in the simulation is the determination
of the winning unit(s), and the generation of the appropriate output for each of
the hidden-layer units. In the remainder of this section, we will describe the
algorithms necessary to construct the restricted CPN simulator. Then, we shall
describe the extensions that must be made to implement the complete CPN. We
conclude the chapter with thoughts on alternative methods of initializing and
training the network.

248 The Counterpropagation Network

6.4.1 The Data Structures

Due to the similarity of the CPN simulator to the BPN discussed in Chapter 3,
we will use those data structures as the basis for the CPN simulator. The only
modification we will require is to the top-level network record specification.
The reason for this modification should be obvious by now; since we have
consistently used the network record as the repository for all network specific
parameters, we must include the data in the CPN's top level dec-
laration. Thus, the CPN can be defined by the following record structure:

record CPN =
INPUTS : to input layer
HIDDENS : "layer; to hidden layer
OUTPUTS : "layer; to output layer
ALPHA : float; {Kohonen learning
BETA : float; {Grossberg learning
N : integer; of winning units

end record;

where the layer record and all lower-level structures are identical to those defined
in Chapter 3. A diagram illustrating the complete structure defined for this
network is shown in Figure 6.24.

6.4.2 CPN Algorithms

Since forward signal propagation through the CPN is easiest to describe, we
shall begin with that aspect of our simulator. Throughout this discussion, we
will assume that

• The network simulator has been initialized so that the internal data structures
have been allocated and contain valid information

• The user has set the outputs of the network input units to a normalized
vector to be propagated through the network

• Once the network generates its output, the user application reads the output
vector from the appropriate array and uses that output accordingly

Recall from our discussion in Section that processing in the CPN es-
sentially starts in the hidden layer. Since we have assumed that the input vector
is both normalized and available in the network data structures, signal propaga-
tion begins by having the computer calculate the total input stimulation received
by each unit on the hidden layer. The unit (or units, in the case where N > 1)
with the largest aggregate input is declared the winner, and the output from that
unit is set to 1. The outputs from all losing units are simultaneously set to 0.

Once processing on the hidden layer is complete, the network output is
calculated by performance of another sum-of-products at each unit on the output
layer. In this case, the dot product between the connection weight vector to the
unit in question and the output vector formed by all the hidden-layer units is

6.4 The CPN Simulator 249

outs

weights

Figure 6.24 The complete data structure for the CPN is shown. These
structures are representative of all the layered networks that
we simulate in this text.

computed and used directly as the output for that unit. Since the hidden layer in
the CPN is a competitive layer, the input computation at the output layer takes
on a significance not usually found in an ANS; rather than combining feature
indications from many units, which may be either excitatory or inhibitory (as in
the BPN), the output units in the CPN are merely recalling features as stored in
the connections between the winning hidden unit(s) and themselves. This aspect
of memory recall is further illustrated in Figure 6.25.

Armed with this knowledge of network operation, there are a number of
things we can do to make our simulation more efficient. For example, since
we know that only a limited number of units (normally only one) in the hidden
layer will be allowed to win the competition, there is really no point in forc-
ing the computer to calculate the total input to every unit in the output layer.
A much more efficient approach would be simply to allow the computer to
remember which hidden layer unit(s) won the competition, and to restrict the

250 The Counterpropagation Network

Figure 6.25 This figure shows the process of information recall in the
output layer of the Each on the output layer receives
an active input only from the winning unit(s) on the hidden
layer. Since the connections between the winning hidden
unit and each unit on the output layer contain the output
value that was associated with the input pattern that won
the competition during training, the process of computing the
input at each unit on the output layer is nothing more than
a selection of the appropriate output pattern from the set of
available patterns stored in the input connections.

input calculation at each output unit to that unit's connections to the winning
unit(s).

Also, we can consider the process of determining the winning hidden unit(s).
In the case where only one unit is allowed to win = 1), determining the
winner can be done easily as part of calculating the input to each hidden-layer
unit; we simply need to compare the input just calculated to the value saved
as the previously largest input. If the current input exceeds the older value,
the current input replaces the older value, and processing continues with the
next unit. After we have completed the input calculation for all hidden-layer
units, the unit whose output matches the largest value saved can be declared the

On the other hand, if we allow more than one unit to win the competition
(N > the problem of determining the winning hidden units is more compli-
cated. One problem we will encounter is the determination of how many units
will be allowed to win simultaneously. Obviously, we will never have to allow
all hidden units to win, but for how many possible winners must we account in

 approach ignores the case where ties between hidden-layer units confuse the determination of
the winner. In such an event, other criteria must be used to select the winner.

6.4 The CPN Simulator 251

our simulator design? Also, we must address the issue of ranking the hidden-
layer units so that we may determine which unit(s) had a greater response to the
input; specifically, should we simply process all the hidden-layer units first, and
sort them afterward, or should we attempt to rank the units as we process them?

The answer to these questions is truly application dependent; for our pur-
poses, however, we will assume that we must account for no more than three
winning units (0 < < 4) in our simulator design. This being the case, we
can also assume that it is more efficient to keep track of up to three winning
units as we go, rather than trying to sort through all hidden units afterward.

CPN Production Algorithms. Using the assumptions described, we are now
ready to construct the algorithms for performing the forward signal propagation
in the CPN. Since the processing on each of the two active layers is different
(recall that the input layer is fan-out only), we will develop two different signal-
propagation algorithms: and

procedure

 to hidden layer, returning indices to
3

var units : to unit
invec : to input
connects : to connection
best : float; current best
 j : integer;

begin
best = -100; best
units = output

for = 1 to length (units)
do all hidden

[i] = 0;
invec = input
connects =

for j = 1 to length (connects) do
[i] = [i] + *

end do;

rank FIRST, SECOND,
end

compete FIRST, SECOND,

end procedure;

252 The Counterpropagation Network

This procedure makes calls to two as-yet-undefined routines, rank and
compete. The purpose of these routines is to sort the current input with the
current best three choices, and to generate the appropriate output for all units
in the specified layer, respectively. Because the design of the rank procedure
is fairly straightforward, it is left to you as an exercise. On the other hand,
the compete process must do the right thing no matter how many winners
are allowed, making it somewhat involved. We therefore present the design for
compete in its entirety.

procedure compete

 outputs for all UNITS using competitive

var outputs : through output
sum : float;
win, place, show : float;
i : integer;

begin
outputs = UNITS;
sum =
win =

if (SECOND != 0)
then

 output

 winning

 a second
 its

sum = sum +
place = second place

if (THIRD != 0) a third place
then its

sum = sum +
show = third place

end if;
end

for = 1 to length (units)
do

 =
end do;

 = win / sum;

 all hidden

 outputs to

 winners

if (SECOND != 0)
then

 = place / sum;

if (THIRD != 0)
then

 = show / sum;
end if;

end
end

 update second

 third

6.4 The Simulator 253

Before we move on to the routine, you should note
that the compete procedure relies on the fact that the values of SECOND and
THIRD are nonzero if and only if more than one unit wins the competition.
Since it is assumed that these values are set as part of the rank procedure, you
should take care to ensure that these variables are manipulated according to the
number of winning units indicated by the value in the variable.

Let us now consider the process of propagating information to the output
layer in the CPN. Once we have completed the signal propagation to the hidden
layer, the outputs on the hidden layer will be nonzero only from the winning
units. As we have discussed before, we could now proceed to perform a com-
plete input summation at every unit on the output layer, but that would prove to
be needlessly time-consuming. Since we have designed the
procedure to return the index of the winning unit(s), we can assume that the
top-level routine to propagate information through the network completely will
have access to that information prior to calling the procedure to propagate in-
formation to the output layer. We can therefore code the
procedure so that only those connections between the winning units and the out-
put units are processed. Also, notice that the successful use of this procedure
relies on the values of the SECOND and THIRD variables being nonzero only if
more than one winner was allowed.

procedure

 outputs for units on the output

var units : output
 : hidden

connects :
i : integer;

begin
units = of output
hidvec = of hidden

for = 1 to length (units) all output
do

connects =
[i] = *

if (SECOND
 there is a second winning

then
 = +

*

if (THIRD 0)
 there is a third winning

254 The Counterpropagation Network

then
[i] = +

*
end if;

end if;
end

end procedure;

You may now be asking yourself how we can be assured that the hidden-
layer units will be using the appropriate output values for any number of winning
units. To answer this question, we recall that we specified that at least one unit
is guaranteed to win, and that at most, three will share in the victory. Inspection
of the compete and routines shows that, with only one
winning unit, the output of all non-winning units will be 0, whereas the winning
unit will generate a 1. As we increase the number of units that we allow to
win, the strength of the output from each of the winning units is proportionally
decreased, so that the relative contribution from all winning units will linearly
interpolate between output patterns the network was trained to produce.

Now we are prepared to define the top-level algorithm for forward signal
propagation in the CPN. As before, we assume that the input vector has been
set previously by an application-specific input routine.

procedure propagate
 a forward signal propagation in the

var first,
second
third : integer; for winning

begin
prop_to_hidden (NET, first,
prop_to_output (NET, first,

end procedure;

second,
second,

CPN Learning Algorithms. There are two significant differences between
forward signal propagation and learning in the CPN: during learning, only one
unit on the hidden layer can win the competition, and, quite obviously, the
network connection weights are updated. Yet, even though they are different,
much of the activity that must be performed during learning is identical to the
forward signal propagation. As you will see, we will be able to reuse the
production-mode algorithms to a large extent as we develop our learning-mode
procedures.

We shall begin by training the hidden-layer units to recognize our input
patterns. Having completed that activity, we will proceed to train the output
layer to reproduce the target outputs from the specified inputs. Let us first
consider the process of training the hidden layer in the CPN. Assuming the
input layer units have been initialized to contain a normalized vector to be

6.4 The Simulator 255

learned, we can define the learning algorithm for the hidden-layer units in the
following manner.

procedure
 the connections to the winning hidden

var winner : integer; to locate winning
 : integer;

 variables for second and
connects : connection
units : input
i : integer;

begin
 need for second

 winning
prop_to_hidden (NET, winner,
units = input
connects =

for i = 1 to length (connects)
 all connections to

do
 = +

 * -
end

end procedure;

Notice that this algorithm has no access to information that would indicate
when the competitive layer has been trained sufficiently. Unlike in many of
the other networks we have studied, there is no error measure to indicate con-
vergence. For that reason, we have chosen to design this training algorithm so
that it performs only one training pass in the competitive layer. A higher-level
routine to train the entire network must therefore be coded such that it can
reasonably determine when the competitive layer has completed its training.

Moving on to the output layer, we will construct our training algorithm
for this part of the network such that only those connections from the winning
hidden unit to the output layer are adapted. This approach will allow us to
complete the training of the competitive layer before starting the training on
the accretive layer. Hopefully, the use of this approach will enable the CPN to
classify inputs correctly as it is training outputs, to avoid confusing the network.

procedure learn_output
 the output layer to reproduce the specified

var winner : integer; to locate winning
dummyl, : integer;

 variables for second &

256 The Counterpropagation Network

connects : connection
units : output
i : integer;

begin
 need for second

 = 0; winning

 (NET, winner, dummyl,
units = output

for i = 1 to length (units) all output
do

connects =

 = +
 * -

end
end procedure;

As with learn_input, performs only one training pass
and makes no assessment of error. When the CPN is used, it is the application
that makes the determination as to when training is complete. As an example,
consider the spacecraft-orientation system described in Section 6.3. This net-
work was constructed to learn the image of the space shuttle at 12 different
orientations, producing the scaled sine and cosine of the angle between the ref-
erence position and the image position as output. Using our CPN algorithms,
the training process for this application might have taken the following form:

procedure learn file)
 the NET using data in the

var iopairs : array . . 1026] of float;
target : array of float;
status : array of boolean;
done :
 j :

begin
 = only one

 (IMAGEFILE,
{init

done = false; at least
 status

while (not done) training
do

for i = 1 to 12 each training

6.4 The CPN Simulator 257

do
j = random

 a pattern at
 (CPN, 1]

 competitive
end

 (status,
end

done = false; output at least
SET_FALSE status

while (not done) training
do

for i = 1 to 12 each training
do accretive

 (CPN,

GET_TARGET (target,
learn_output (CPN,

end

 (Status,
end

end procedure;

where the application provided routines and
 perform the function of deciding when the CPN

has been trained sufficiently. In the case of testing the competitive layer,
this determination was accomplished by verifying that all 12 input patterns
caused different hidden-layer units to win the competition. Similarly, the output
test indicated success when no output unit generated an actual output differ-
ent by more than 0.001 from the desired output for each of the patterns.
The other routines used in the application,

 and merely perform housekeeping functions for
the system. The point is, however, that there is no general heuristic that we
can use to determine when to stop training the CPN simulator. If we had had
many more training pairs than hidden-layer units, the functions performed by

 and might have
been altogether different.

6.4.3 Simulating the Complete CPN
Now that we have completed our discussion of the restricted CPN, let us turn
our attention for a moment to the full CPN. In terms of simulating the complete
network, there are two differences between the restricted and complete
network implementations:

258 The Counterpropagation Network

1. The size of the network, in terms of number of units and connections

2. The use of the network from the applications perspective

Quite obviously, the number of units in the network has grown from N +
H + where N and M specify the number of units in the input and output
layers, respectively, to 2(N+M) + H. Similarly, the number of connections that
must be maintained has doubled, expanding from H(N + M) to 2H(N + M).
Therefore, the extension from the restricted to the complete CPN has slightly less
than doubled the amount of computer memory needed to simulate the network.
In addition, the extra units and connections place an enormous overhead on the
amount of computer time needed to perform the simulation, in that there are
now N + M extra connections to be processed at every hidden unit.

As illustrated in Figure 6.26, the complete CPN requires no modification
to the algorithms we have just developed, other than to present both the input
and output patterns as target vectors for the output layer. This assertion holds
true assuming the user abides by the observation that, when going from input
to output, the extra M units on the input layer are zeroed prior to performing
the signal propagation. This being the case, the inputs from the extra units
contribute nothing to the dot-product calculation at each hidden unit, effectively
eliminating them from consideration in determining the winning unit. By the
same token, the original N units must be zeroed prior to performance of the
Counterpropagation from the M new units to recover the original input.

6.4.4 Practical Considerations for the CPN Simulator

We earlier promised a discussion of the practical considerations of which we
might take advantage when simulating the CPN. We shall now live up to that
promise by offering insights into improving the performance of the CPN simu-
lator.

Many times, a CPN application will require the network to function as an
associative memory; that is, we expect the network to recall a specific output
when presented with an input that is similar to a training input. Such an input
could be the original input with noise added, or with part of the input missing.
When constructing a CPN to act in this capacity, we usually create it with as
many hidden units as there are items to store. In doing so, and in allowing only
one unit to win the competition, we ensure that the network will always generate
the exact output that was associated with the training input that most closely
resembles the current input.

Having made this observation, we can now see how it is possible to reduce
the amount of time needed to train the CPN by eliminating the need to train
the competitive layer. We can do this reduction by initializing the connections
to each hidden unit such that each input training pattern is mapped onto the
connections of only one hidden unit. In essence, we will have
competitive layer by initializing the connections, in a manner similar to the
process of initializing the BAM, described in Chapter 4. All that remains from

6.4 The Simulator 259

Figure 6.26 The complete processing model is shown. Using the
algorithms developed for the limited CPN, processing begins
with the application of an input pattern on the units and
by of the extra units, which we use to represent
the output. In this case, the output units will produce the
output pattern associated with the given input pattern during
training. Now, to produce the counterpropagation effect, the
opposite situation occurs. The given output pattern is applied
to the input units previously zeroed while the units
are zeroed. The output of the network, on the units,
represent the input pattern associated with the given output
pattern during training.

this point is the training of the output layer, which ought to conclude in fairly
short order. An example of this type of training is shown in Figure 6.27.

Another observation about the operation of the CPN can provide us with
insight into improving the ability of the network to discriminate between similar
vectors. As we have discussed, the competitive layer acts to select between
one of the many input patterns the network was trained to recognize. It does
this selection by computing the dot product between the input vector, I, and
the connection weight vector, Since these two vectors are normalized, the
resulting value represents the cosine of the angle between them in
However, this approach can lead to problems if we allow the use of the null
vector, 0, as a valid input. Since 0 cannot be normalized, another method of

260 Programming Exercises

Figure 6.27 A restricted CPN initialized to eliminate the training of the
competitive layer is shown. Note that the number of hidden
units is exactly equal to the number of training patterns to be
learned.

propagating signals to the hidden layer must be found. One alternative method
that has shown promising results is to use the magnitude of the difference vector
between the I and vectors as the input computation for each
hidden unit. Specifically, let

 =

be the input activation calculation performed at each hidden unit, rather than
the traditional

Use of this method prevents the CPN from creating duplicate internal map-
pings for similar, but different, input vectors. It also allows use of the null vector
as a valid training input, something that we have found to be quite useful. Fi-
nally, at least one other researcher has indicated that this alternative method can
improve the ability of the network to learn by reducing the number of training
presentations needed to have the network classify input patterns properly

Programming Exercises

6.1. Implement the CPN simulator described in the text and test it by training it
to recognize the 36 uppercase ASCII characters from a pixel matrix repre-
senting the image of the character. For example, the matrix illustrated
next represents the pixel image of the character A. The equivalent ASCII

Programming Exercises 261

code for that character is Thus, the ordered pair
represent one training pair for the network. Complete this example by train-
ing the network to recognize the other 35 alphanumeric characters from their
pixel image. How many hidden-layer units are needed to precisely recall
all 36 characters'?

..x. .

.
X. .

xxxxx = 00100 01010 10001 11111 10001 10001
X. .

X. .

6.2. Without resizing the network, retrain the CPN described in Programming
Exercise 6.1 to recognize both the upper- and lowercase ASCII alphabetic
characters. Describe how accurately the CPN identifies all characters after
training. Include in your discussion any reasons you might have to explain
why the CPN some characters.

6.3. Repeat Programming Exercise but allow two hidden units to win the
competition during production. Explain the network's behavior under these
circumstances.

6.4. Recreate the spacecraft-orientation example in Section 6.3 using your CPN
simulator. You may simplify the problem by using a smaller matrix to
represent the video image. For example, the matrix shown next might
be used to represent the shuttle image in the vertical position. Train the
network to recognize your image at 45-degree rotational increments around
the circle. Let two units win the competition, as in the example, and let
the two output units produce the scaled sine and cosine of the image angle.
Test your network by obscuring the image (enter a vector with Os in place
of and describe the results.

. .

. . .

. .

.xxx. = 00100 00100 00100 11111
xxxxx

6.5. Describe what would happen in Programming Exercise 6.4 if you only
allowed one unit to win the competition. Describe what would happen if
three units were allowed to win.

6.6. Implement the complete CPN simulator using the guidelines provided in
the text. Train the network using the spacecraft-orientation data, and exer-
cise the simulator in both the forward-propagation and
modes. How well does the simulator produce the desired input pattern when
given sine and cosine values that are not on a 45 degree angle?

262 Bibliography

Suggested Readings

The papers and book by are good companions to the material in
this chapter on the CPN [5, 6, Hecht-Nielsen also has a paper that discusses
some applications areas appropriate to the CPN

The instar, outstar, and avalanche networks are discussed in detail in the
papers by Grossberg in the collection Studies of Mind and Brain Individual
papers from this collection are listed in the bibliography.

Bibliography

 James A. Freeman. Neural networks for machine vision applications: The
spacecraft orientation Ford Aerospace

 pp. Fall 1988.

[2] Stephen Grossberg. How does a brain build a cognitive code. In Stephen
Grossberg, editor, Studies of Mind and Brain. D. Reidel Publishing,
Boston, pp. 1-52, 1982.

[3] Stephen Grossberg. Learning by neural networks. In Stephen Grossberg,
editor, Studies of Mind and Brain. D. Reidel Publishing, Boston, pp. 65-
156, 1982.

[4] Stephen Grossberg, editor. Studies of Mind and Brain, volume 70 of Boston
Studies in the Philosophy of Science. D. Reidel Publishing Company,
Boston, 1982.

[5] Robert Hecht-Nielsen. networks. Applied Optics,
 December 1987.

[6] Robert Hecht-Nielsen. Counterpropagation networks. In Maureen Caudill
and Charles Butler, editors, Proceedings of the IEEE First International
Conference on Neural Networks, Piscataway, NJ, pages II-19-II-32, June
1987. IEEE.

[7] Robert Hecht-Nielsen. Applications of Counterpropagation networks. Neural
Networks, 1(2):131-139, 1988.

[8] Robert Hecht-Nielsen. Addison-Wesley, Reading, MA,
1990.

[9] David Hestenes. How the brain works: The next great scientific revolution.
Presented at the Third Workshop on Maximum Entropy and Bayesian
Methods in Applied Statistics, University of Wyoming, August 1983.

 E. G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In David E. Rumelhart and James L.
McClelland, editors, Parallel Distributed Processing, Chapter 8. MIT
Press, Cambridge, MA, pp. 318-362, 1986.

 Donald Woods. Back and counter propagation aberrations. In Proceedings
of the IEEE First International Conference on Neural Networks, pp. I-

 IEEE, San CA, June 1987.

